Architecture of the Mobile Environment
for Intelligent Genetic Search and Proxy Caching
Dragana Cvetković1, Damir Horvat1, 3, Milja Pešić1, Dejan Petković1, Veljko Milutinović1, Petar Kočović2 and Vlada Kovačević2

1Department of Computer Engineering

School of Electrical Engineering

University of Belgrade

P.O. Box 35-54, 11120 Belgrade, Serbia, Yugoslavia

2TehnicomNET

Bul. Vojvode Mišića 37

11000 Belgrade, Serbia, Yugoslavia

http://www.tehnicom.net

3ComNet

Studentski trg 4

11000 Belgrade, Serbia, Yugoslavia

http://www.comnet.co.yu

dana@galeb.etf.bg.ac.yu, had@galeb.etf.bg.ac.yu, ulis@galeb.etf.bg.ac.yu, dwecci@sezampro.yu, vm@etf.bg.ac.yu

Abstract

As the number of documents and servers on Internet grows with the enormous speed, it becomes necessary to design efficient algorithms and tools for search and retrieval of documents. Also, the number of accesses to servers on Internet constantly grows. Congestion of servers and links can be alleviated using proxy caches. Latency on Web can be reduced using prefetching and caching. Efficient search of documents can be done with improved genetic algorithm that exploits the principles of temporal and spatial locality. Mobile agents can be used to optimize network traffic for distributed applications. This paper describes several existing solutions to the problem and discusses the implementation of Java distributed object application for experimenting with genetic search and proxy caching algorithms for Internet.

1. Introduction

Among the huge number of documents and servers on the Internet, it is hard to quickly locate documents that contain potentially useful information. Numerous accesses to most popular sites resulted in latencies and congestion. Therefore, the key factor in software development nowadays should be the design of applications that efficiently locate and retrieve Internet documents that best meet user's requests. The accent is on intelligent content examination and selection of documents that are most similar to those submitted by the user, as input.

One approach to this problem is indexing all accessible Web pages and storing this information into the database. It extracts keywords from the user supplied documents and consults the database to find documents in which given keywords appear with the greatest frequency. Besides the need to maintain a huge database, it suffers from the poor performance - it gives numerous documents totally unconnected to the user's topic of interest.

The second approach is to follow links from a number of documents submitted by the user and to find the most similar ones, performing a genetic search on the Internet. Namely, application starts from a set of input documents, and by following their links, it finds documents that are most similar to them. This search and evaluation are performed using genetic algorithms as a heuristic search method.

Improved genetic algorithm includes mutations exploiting spatial and temporal locality. The idea of spatial locality exploitation is to examine documents in the neighborhood of the best ranked documents so far, i.e. the same server or local network. Temporal locality concerns maintaining information about previous search results and performing mutation by picking URLs from that set.

This solution is the best present solution in static domain, but a lot of time is spent for fetching documents from the Internet onto the local disk, because content examination and evaluation must be performed off-line. Thus, a huge amount of data is transferred through the network in vain, because only a small percent of fetched documents will turn out to be useful.

Proxy caches are located between users and Web servers. They store most popular pages, which are delivered to the user on their request. This reduces network congestion, long response times, and reduces a number of hits to popular Web servers. But, delivered copy of the document can be stale. To prevent this, Web servers are asked from time to time if change has happened since last retrieval. But these “questions” travel over long distances, put additional load to the network and reduce the accuracy of caching.

The logical solution of these problems is to construct mobile agents that would transfer themselves onto the home servers and examine documents at remote sites, transferring back only the needed documents and data. In addition to lower data transfer over the net, great improvement is achieved using parallel data processing. In genetic algorithm, multiple independent subpopulations each run a genetic algorithm on their own subpopulations and periodically fit strings migrate between the subpopulations. This approach achieves significant gain in time and disk space, especially in the module that calculates Jaccard's score since only these numbers is sent back through the network, instead of all documents that are potential candidates for the result set. To improve proxy caching mobile agents can pole Web server for changes and inform proxy if some page has been changed. Since requests are issued closer to the server their frequency can be increased without overloading the net.

2.
A Survey of Tools for Creation

of Mobile Applications

During the lifetime of an mobile agent, it can travel to different hosts on a network and perform work at each location. The mobility of agents differentiates them from either distributed objects or Java applets. Mobility means that the agent moves from one host to another, carrying both its data and the code. A mobile agent should be able to execute on any machine within a network, regardless of the processor type or operating system. The agent code should not have to be installed on every machine that the agent can potentially visit; it should move with the agent’s data automatically.

In mobile agent system, agent code should not be installed on every machine that an agent could potentially visit but it is not really possible because of the security reasons. For that reason, some kind of support for mobile agents is needed. Also, agent server enables the agent transfer; the local server negotiates with other servers, freezes agent execution, transfers the agent to a remote server and when the agent is received, allows it to resume execution at the remote location.

One of the most important issue about the mobile agents is the choice of implementation language. Earlier, there were attempts to improve distributed programming and to enable the mobile agent programming which resulted in languages like TCL, Scheme, Oblique, and Rossete. The only widely accepted language was Telescript by Object Magic. Some efforts were done in using these languages in mobile agent projects like Ara (agents using TCL and C/C++) and D’Agent (earlier called Agent TCL -- using TCL) but they have not gained wider popularity or they are not completed yet.

The reasons for using Java are numerous. Java Developing Kit 1.1 (JDK 1.1) and JDK 1.2 with their possibilities, like Remote Method Invocation (RMI) and the serialization of objects, are almost a natural choice for implementation of mobility. Further more, JDK 1.2 gives some improvements in security which enables fine graduation of the security allowances.

Java is easy to implement on almost any system and thanks to its popularity, there are many platforms deployed already with many services, which the agents can use.

There are several Java-based mobile agent systems commercially available. These mobile agent toolkits provide environment for running mobile agent system as well as all needed classes in Java for building such systems. The builder supplies the agents with the “brain”, the algorithms that will be used to accomplish the given goals.

Some of mobile agent systems are Aglets by IBM, Voyager by Object Space, Odyssey by General Magic, and Concordia by Mitsubishi Electric TCA. They are commercially available and ready to use.
3. Architecture of the Infrastructure

for Experimenting in Genetic Search

and Proxy Caching

In our experiments in genetic search and proxy caching, Concordia System and tools were used. A Concordia System consists of multiple machines in a local or wide area network, each of which is running a Concordia Server. The Concordia Server is responsible for providing all Concordia functionality on a given machine, including the basic agent mobility and remote administration. Each Concordia Server includes a number of Services, which provide specific functionality on the machine.

To enable the mobile agent system, it is necessary to install Concordia Server on every machine within a network. It enables agent transfer and interface between the visiting agents and the host system.

Concordia includes a collaboration framework that enables multiple agents to work together and coordinate their actions. Agents within an application may form one or more collaboration units.

Agents could use several communication technologies such as CORBA (Java/IDL), sockets, or Concordia Distributed Events for network communication.

In Concordia there is a distributed events framework that enables agents to communicate with each other either synchronously or asynchronously. They are extremely useful for notifying objects of changes to resources and unexpected conditions.

RMI is another mechanism by which an agent can interact with other objects on a network.

In a distributed application some of the implementations are assumed to reside in different virtual machine. One of the central and unique features of the RMI is its ability to download code of an object’s class if the class is not defined in the receiver’s virtual machine. The types and the behavior of an object, previously available only in a single virtual machine, can be transmitted to another, possibly remote, virtual machine. This allows new types to be introduced into a remote virtual machine, thus extending the behavior of an application dynamically. This ability is enabled by the dynamic nature of the Java platform, which is extended to the network by RMI. RMI dynamically loads code into the receiver’s Java virtual machine and runs the code without prior knowledge of the class. Such applications that have the ability to download code dynamically with RMI are part of the basic mechanisms for distributed programming on the Java platform.

To make our mobile system more tool-independent and to improve communication, system is upgraded with Monitor module. This module is responsible for launching and monitoring mobile agent modules, as well as for managing communication through the network among these modules.

The idea is to make communication through the net and managing mobile agent system transparent to the applications modules. The applications are organized with one static Server Application on the local server and several Mobile Application modules on remote servers for executing tasks. These modules communicate through Monitor and corresponding Client Agent module on remote server using standardized message format for sending and act like static application modules located on the same server.

The Monitor module after receiving a message from the Server Application, analyze the content and determines the Client Agent’s target location. For the reason that the Server Application do not know exactly where Mobile Application modules are located, it is possible that there is no Mobile Application module running on remote location or even Client Agent module. In that case Monitor sends message to the Client Agent on the remote server to start new Mobile Application module and to pass the message, or first sends Client Agent to the new location to bring the Mobile Application code to the remote location and to start it there.

To reduce necessary transfer of Client Agents several improvements are implemented:

· after evaluation of the document Client Agent stays on the new location and waits for further instructions. In the case that evaluation of new document on the same server is needed (e.g., because of spatial locality), the Monitor only sends a message to the Client Agent on the server to evaluate the document, instead of sending new Client Agent. To avoid mistakes, every Client Agent has its ID and keeps the ID of the current search. In intention to free the resources of the host server, Client Agent dispose itself after given time of inactivity.

· [image: image1.wmf]Client

Agent

Mobile

Applic.

Server

Client

Agent

Mobile

Applic.

Server

Client

Agent

Mobile

Applic.

Server

Monitor

Server

Applic.

Home

Server

the Client Agent, after sending results to the Monitor can send its clones to the new locations following hyperlinks in the documents.

· the sending of Client Agent can be done from the remote location where Client Agent is already sent. That is, the Monitor can send a message to the Client Agent on the remote location to send itself to the new locations. That reduces data transfer on the home server.

In a present time, there are no many Concordia servers installed on the Internet, so the possibilities to send mobile agents are reduced, but improvements in performance are still significant. Client Agents are sent to the nearest location on the Web and with trusted server and the Mobile Applications can fetch documents for less time and less net transfer. In this solution several Mobile Applications work in parallel instead of only one application installed on the local server.

For experimental use, Monitor module has the table of trusted servers on the net, where it can send its mobile agents. Every time when new location occurs for sending agent, Monitor checks the location if there is Concordia server installed and if it can send an agent to that location. If agent launching succeeds in a specified timeout period, Monitor will update its table of available servers adding new data. This table is stored for later use.

For the reason of improving performance, Client Agent modules are remaining on remote locations as long as they have Mobile Applications to serve or until given time of inactivity. Also, several Server Applications can use the same Monitor module on the local host and Mobile Applications are using the corresponding Client Agent module available to more than one of these modules on each remote host. The first time when Server Application tries to send the message through Monitor module, Monitor registers the new application to the local table of applications. This table is used for local communication among Monitor and Client Agent modules and applications do not need to store their ID. When Server Application is finishing its work, it sends a message to Monitor module to clean up corresponding Mobile Applications. Then Monitor sends message to all Client Agents to terminate corresponding Mobile Applications and it will release resources on the remote server.

The software agent system is modular that makes it easy for the further improvements and for upgrading with new application modules. These new applications would be developed as any other static application using the existing infrastructure for communication and enabling mobility without the need to use some other tools.

4. Experimenting in Genetic Search
Genetic algorithm is a search method that is used in the design of intelligent agents. Genetic algorithm can process many documents in parallel, evaluate them according to their similarity to the supplied ones, and generate a result in the form of a group of documents found.

However, incorporating the knowledge about spatial and temporal locality, and making these agents mobile can improve the performance of the application and reduce the network traffic.

[image: image2.wmf]C

O

N

T

R

O

L

P

R

O

G

R

A

M

Agent

Spider

Topic

Space

Time

Generator

Input set

Current set

Output set

TopData

NetData

4.1. Existing solutions

The links approach was realized and tested at the University of Hong Kong, and results were presented at the 30th Annual Hawaii International Conference of System Sciences [3]. The Best First Search was compared to genetic search where mutation was performed by picking a URL from a subset of URLs covering the selected topic. That subset is obtained from a compile-time generated database. The following steps were performed:

1. A set of input documents, submitted by the user, was indexed using the SWISH package for indexing HTML documents, and keywords were extracted. The current set is initialized with the input set.

2. Documents that the hyperlinks from the current set refer to, were fetched and their similarity to the input documents evaluated using Jaccard's score as the evaluation function. The best ones were injected into the current set.

3. From the prepared database of topic-sorted URLs, a number of URLs was selected randomly (under user selected category) and injected into the current set.

4. The best document from the current set was injected into the output set and documents that its hyperlinks point to were injected into the current set.

5. Steps 2, 3, and 4 were repeated until the predefined size of the output set was attained, or until current set was emptied.

It was shown that search using genetic algorithms gives better results than the Best First Search for a small set of input documents, because it is able to step outside the local domain and to examine a larger search space.

4.1.1. Our solutions

In our project in static domain, a set of software packages was developed for experimenting in improved genetic search on the Internet. They are developed using the LEGO approach, so they are able to operate as stand-alone applications, but are also compatible and easily interfaced with one another to combine different search methods and to support reconfigurable nature of the project. Block diagram of the static software package is shown in
Figure 2.

This agent system includes mutations exploiting spatial and temporal locality. The approach taken at this project is referred to as semantic mutation strategy. The stress is on the rationales behind the chosen mutation strategy, and not on the overall genetic algorithm, which can be summarized as follows:

1. Fetch a WWW presentation and extract URLs.

2. Measure the semantic quality of the fetched WWW presentations.

3. Select a subset of the fetched WWW presentations, for further processing.

4. Continue and repeat the above, with a periodic mutation.

Essential issues in such an approach are: presentation of genes (URLs), measurement of search quality (typically, Jaccard's score), selection of genetic material to continue with (typically, subset), crossover and mutation.

Typical mutation algorithms imply the existence of a mutational database, which has to be prepared at "compile-time" [3]. Compile time activities represent a special effort. Also, by the time when the "run-time" activity starts, things may change in the environment, and the compile time prepared infrastructure (database contents) may not be appropriate or optimal any more.

Our research concentrates on mutational approaches, which use the run time information only. Our run time mutation approach is referred to as semantic mutation, based on the principles of spatial and temporal locality.

Space is the application that performs mutation using spatial locality. Document is a spatially local to the other document if they are located on the same server or the same local network. If genetic algorithm finds a document of a high fitness value on a particular site there is a strong possibility that it can find similar documents somewhere on the same local network. This is because many people that have accounts on the same server or network usually have similar interests (which is most likely for academic networks).

Time is the application that performs mutation using temporal locality. A database of URLs that appeared in the output set of the previously performed searches is maintained, along with the counter for each URL. This counter shows the number of times that every particular URL occurred in the output set of any search. Mutation is performed by picking from this database a number of URLs with the highest counter value and inserting them into the current set. This database has three fields: topic, URL and count number, and is updated at the end of the run-time of the main application - Control Program in the following way:

1. Each URL from the output set is searched for in NetData.
2. If it is found, its count number is incremented.

3. If it is not found, it is inserted into NetData with count number equal to 1.

4. In the case of overflow (limit size of NetData is reached) documents with the lowest count number are deleted from database and thus free space is gained.

Topic is the application that performs mutation as described in [3] by selecting URLs from the previously generated database and injecting them into the current set and thus performing, so called "topic mutation".

Generator is the application that generates and updates the database of URLs that are classified according to the topic they cover. This database is used for mutation, when repeating the Hong Kong experiment. This database has only two fields: URL and topic. Topic field is filled with the input parameter of the application.

[image: image3.wmf]C

O

N

T

R

O

L

L

O

G

I

C

Server

Agent

Topic

Space

Time

Generator

Input set

Current set

Output set

TopData

NetData

Monitor

+

Client Agent

Spider

MAgent

Spider is the application for fetching Internet documents, starting from one input URL, up to the certain depth, given by the input parameters. Input parameters are: starting URL, i.e. the WWW address (it is required parameter), depth the hyperlinks will be followed to, and number of concurrent connections. Documents are stored onto the local disk in the folder structure resembling the one on the remote server. A separate folder is created for each remote server and hyperlinks in the stored documents are changed, so that they point to the documents on the local disk. The option of giving the number of parallel processes improves multithreading of the application.

The disadvantage is the high transfer overhead because all the documents are fetched to the home server and then examined and evaluated off-line, using large disk space.

4.2. Proposed solutions
In intention to reduce the needed transfer overhead and to accelerate the search, in this project the existing static agent system is upgraded by turning it into a system based on mobile agents.

Instead of fetching all the documents over the net, mobile agents are sent to the locations where these documents are, and perform evaluations over there. Another improvement is in the parallelism of execution. Mobile agents are sent to more than one location, to make evaluations in parallel.

Gain in time is enormous, and also the corresponding lowering of the network traffic because significantly fewer amounts of data are transferred in the case of mobile implementation. Block diagram of our package in the mobile implementation is shown in Figure 3.

Server Agent is the application on the local server for coordination of several MAgent modules located on the remote servers and prepares the best scored documents for the output.

MAgent is the application sent to remote location that browses through the network and performs Jaccard's score evaluation, sending back only the best URLs and their Jaccard's score.

Monitor + Client Agent is the module which enables communication between Server Agent module on the local host and several Magent modules on remote locations through the events and RMI. Sending of the messages through the net is transparent to Server Agent and MAgent modules.
Modules Generator, Topic, Space, Time are the same as in static implementation. Module Spider is the same, but has the new role - to fetch only best scored documents for output.

Control Logic is the control layer that manages several static applications and coordinates static and mobile applications in the mobile agent system.

4.3 Experiment

In the experiment that was performed we measured the average quantity of transferred data to home server, running time as a measure of success of the static implementation and mobile implementation of genetic search. The desired number of output documents was varied between 5 and 20 to measure the influence of the generation size on the performance of the applications. Number of output documents directly increase number of evaluated documents.

4.4. Results of the experiment

[image: image4.wmf]Run time

0

1

2

3

4

5

6

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of output documents

Running time of the

application

Static impl

Mobile impl

The mobile implementation shows significantly lower transfer over the net. This is because in static implementation all the data for evaluation are sent over the network, which can be significant versus mobile implementation where only several MAgent “clones” are sent. For the same reason, the quantity of transferred data in static implementation grows much faster with number of output data.

The direct implication of less transfer overhead is a less run time needed. In mobile implementation evaluation of the documents are done in parallel on remote servers
and only the results are sent to the home server. All that makes a significant improvement in performance specially when more output documents are needed.

5. Experimenting in Proxy Caching

5.1. Problem

[image: image5.wmf]Transfer overhead

0

1

2

3

4

5

6

7

8

9

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of output documents

Quantity of data

transferred

Static impl

Mobile impl

Proxy caches store most popular pages that some group of users requested from different Web servers. This reduces network congestion, long response times, and reduces a number of hits to those Web servers. But, the delivered copy of the document can be stale. Proper caching of Web objects means maintaining proper cache consistency. Delivering stale information can reduce all benefits of using caches. Thus, the use of good technique for maintaining cache consistency can much improve Internet communication, widening population of users that use them, which again can speed up the communication.

5.2. Existing solutions

The three main techniques of maintaining cache consistency are:

Validation checks (Client polling): Retrieved objects are stored along with a last modified time. When the object is requested, a request to the primary remote server is sent to check whether the last modified time is changed since last retrieval, in which case the new version is sent back.

Invalidation callbacks: The primary server maintains information about the proxies that are retaining copies of its objects. Proxy updates objects if is notified that object has changed.

Time-to-live (TTL) estimation: For each object an expiration time is estimated. Until it expires, the local copy is returned. After expiration, a new copy of the object is requested.

The first method of maintaining cache coherence generates requested byte overhead and additional latency. Validity of its stored objects could be checked at fixed time intervals and not wait till requested by the client. The second method requires new protocols for notification and tracking location of delivered objects. Inaccuracy in TTL predictions in third method may result in unnecessary retrievals for small TTL and in stale data for very high TTL.

5.3. Proposed solution.

To reduce latencies and congestion for long distance poling, poling should be closer to the server that is poled. Adaptive delays between poles can be applied to prevent overloading the server but still shorter delays can be used in algorithm.

Mobile agent (MA) can be sent to the location that is closest to the Web server (WS) that contains the original objets which copies are cached in some proxy. MA is delegated to track changes of the original object and informs the proxy of change. MA can pole WS with greater frequency than proxy yielding the greater accuracy. It still reduces number of bytes that travel over network since it is closer to the origin.

5.4. Experiment

This package consists of static (local) agent (SA) and mobile agent (MA). SA listens to all requests issued to the local proxy cache (LPC) using Internet Caching Protocol (ICP) and decides to send mobile agents to those locations that contains the greater number of cached objects. MA poles WS and informs the SA if change is found. Then SA refreshes the LPC issuing HTTP if-modified-since request.

There are few problems that influence the system functioning.

It is expected to send MA to the closest location to the WS. Ideal situation would be to send MA to the same server where the WS is located. This would be the most efficient solution since MA could scan file system of that server to track changes. But there will be always some server that doesn’t support MAs, so the only solution is to pole WS for changes issuing HTTP if-modified-since requests. The decision of MA destination is made in Monitor since it is common task for genetic search and proxy caching support. Also there should be the only one MA on the one server. Monitor also takes care of that. SA sends message to Monitor that contains desired destination (full URL of the document) and data that MA needs. It is expected that within every LAN there will be one server that supports mobile agents. Thus communication between WS and MA is performed through fast networks which speed grows faster than speed of entire Internet. The bottleneck of this system is throughput of WS, which mostly depends on network it is attached to, so it is expected that it will not harm primary WS function.

Sending MA to some WS will not improve caching efficiency. Those WS contain documents that are never changed, or rarely or never again visited, or contains dynamic pages. URLs that contain ‘?’ or ‘cgi-bin’ or other strings from configurable stoplist are not tracked. All other documents are worth tracking.

One common problem in mobile environment is what happens when SA dies or some MA dies and communication between them is lost. MA has timer that is set every time it receives a message. When time is up, MA kills itself. If MA is lost Monitor detects that and sends a new MA. If SA finds that some URL is not changed for long time (this is configurable), it sends message to MA to stop tracking it.

This time period is constant set by the administrator and should represent the time after which is assumed that a document will not be changed. For this experimental uses it was set to one week, but some research could be done on this subject in future. If MA has empty list of URLs to be tracked, it dies.

If SA receives a message that some URL is changed it has to refresh content of the LPC. But maybe LPC already purged this document from the cache. Before refreshing SA issues ICP request and asks LPC does it have that URL, if has, SA issues HTTP if-modified-since requests to LPC. If LPC already has fresh copy it doesn’t fetch it again. These requests are made locally so they should not slower the LPC.

SA and LPC have to be configured to work properly. LPC has to support ICP. SA is not a real cache but has to listen to all requests issued to LPC. SA is listener to LPC, and LPC has to forward all requests to SA but should not wait for answer from it. Also, LPC has to accept ICP request from SA and to respond to them. It is set as parent to SA.

Poling algorithm: has to be designed to increase accuracy in predicting of next change. Simple solution is to shorten intervals between two checks. But this can flood WS with requests and disturb its functioning.

Some documents changes very often (e.g. news pages), some don’t (e.g. personal home pages), some periodically (e.g. companies can update their pages with new release of their product). The idea is to remember the history of changes of each document. It is assumed that document usually changes in similar time intervals. The latest ten delta time intervals (dt) between sequential changing of document, URL-address, frequency and the last poling time are remembered. The next poling time tset_up is given with the following formula:

 t set_up = t current + dt chosen
1) in case that the document has changed after last
check up time:

· for big dt (dt > 2 hrs):

dt chosen = (dt the_most_frequently_used + dt the_last_chosen)/4

· for small dt (dt < 2hrs):

dt chosen = (dt the_most_frequently_used + dt the_last_chosen)/2

2) if it has not:

dt choosen = 2* dt the_last_chosen

History structure is consisting of two tables, each one of 10 registers for small and big delta time intervals.

[image: image6.wmf]Local

proxy

cache

Static (local) agent

Mobile agent

WEB

Server

User

HTTP

HTTP

HTTP

ICP

Messages

Network

HTTP

Small delta intervals are defined as multiple of 5 minutes in interval from 5 min to 2 hours. Big delta intervals are defined as multiple of 30 minutes in interval from 2 hours to 24 hours. On occurrence one of these two dt, we switch to corresponding history table looking for
dt the_most_frequently_used.

Since some documents have periods of frequent changes and periods of slow changes, both periods are detected and documents are treated according to a state they are in.

5.5. Results of the experiment

Current caches are usually set to check freshness of locally stored copy of the document once per day. Adaptive algorithm in the worst case checks twice per day but won’t miss more than 12 hour more than once. So the accuracy is increased at least twice.

Mobility reduced network load since poles are performed on shorter distances (usually measured in hops). Web server is not overloaded since poling intervals depend on dynamic of change of each document. There is no exact calculation to prove that since it depends on document’s history. But the worst case is when document doesn’t changes at all and MA is delegated for only one URL. Standard proxy cache will check once per day while MA will check twice. If distance between proxy and WS is more than twice the distance between MA and WS, saving is obvious.

The size of MA is also important. It is approximately 14 KB, which are approximately 25 HTTP if-modified-since requests. If request makes more than 5 hops ad tracks at least 5 URLs it pays to delegate MA.

Putting some domains or subdomains in a stoplist and preventing sending MA if users requested less than some number of documents (also configurable) solves this problem.

6. Conclusion

Due to the fast growth of the quantity and variety of Internet sites, finding the desired information as quickly and thoroughly as possible becomes a most important issue for research. In this paper it is shown how the use of mobile agents can help finding and obtaining fresh and desired information. Presented infrastructure forms bases for additional improvements of search and caching service. Next step could be exchange of information between caching and searching module. The URLs of the most popular pages found in the cache could be submitted to searching module as a candidate for a URL in the database. It is to expect that those popular documents could be the target of someone’s search, especially in environments, where group of people share interests in some subject (e.g. companies, departments...). Also, it is to expect that highly ranked URLs in a search result will be fetched. To reduce user’s fetching time, those documents could be prefetched. End users will have all desired information as soon as possible and as accurate as possible.

Acknowledgments

This research was supported by the National Science Foundation of Serbia in cooperation with
Tehnicom – Internet provider from Belgrade.

Authors would like to express their gratitude to Dr. P. Kocovic and to the members of the EBI group at the Department of Computer Engineering, School of Electrical Engineering, University of Belgrade, for their assistance, suggestions, and support in writing this paper.

Further details about the applications and the executable code can be found at the following location: http://rti7020.etf.bg.ac.yu/rti/ebi.

[1] References

[2] Mirković, J., Cvetković, D., Nešić, Lj., Tomča, N., Cvetićanin, S., Slijepčević, S., Obradović, V., Mrkić, M., Čakulev, I., Milutinović, V., Kraus, L.,

“Genetic Algorithms for Intelligent Internet Search: A Survey
and a Package for Experimenting with Various Locality Types,”

University of Belgrade, Belgrade, Serbia, Yugoslavia, 1998.

http://www.etf.bg.ac.yu/~ebi/.

[3] Mirkovic, J., Kraus, L., Milutinovic, V.,
“A Survey of Genetic Algorithms

for Intelligent Internet Search,”

University of Belgrade, Belgrade, Serbia, Yugoslavia, 1998.

http://www.etf.bg.ac.yu/~sunshine/.

[3] Chen, H., Chung, Y., Ramsey, M., Yang, C., Ma, P., Yen, J.,

"Intelligent Spider for Internet Searching,"

Proceedings of the Thirtieth Annual Hawaii International Conference on System Sciences,

Maui, Hawaii, USA, January 1997.

[4] Horvat, D., Milutinović, V.,
“A Survey of Mobile Agents and Java Mobile Agents Toolkits,”

University of Belgrade, Belgrade, Serbia, Yugoslavia, 1998.

http://www.etf.bg.ac.yu/~had/.

[5] Petkovic, D.,

“A Survey of Proxy Caching and Prefetching”

University of Belgrade, Belgrade, Serbia, Yugoslavia, 1999.

http://rti7020.etf.bg.ac.yu/rti/ebi/.

� EMBED Visio.Drawing.4 ���

Figure 1:	Communication through Monitor module.

	Server Application on local server

and Mobile Applications on remote servers

	send messages through Monitor and Client Agents modules.

Figure 2: Block diagram of the static implementation of the project. Continuous lines show the flow of data, and dashed lines show the control flow. Rectangles represent the applications and ovals the input and output data structures.

� EMBED Word.Picture.8 ���

Figure 3: Block diagram of the mobile implementation of the project. Continuous lines show the flow of data, and dashed lines show the control flow. Rectangles represent the applications and ovals the input and output data structures.

� EMBED Word.Picture.8 ���

Figure4: Run time of the static and mobile implementation, as a function of the number of output documents.

� EMBED Excel.Sheet.8 ���

Figure5: Quantity of data transferred by the static and mobile implementation, as a function of the number of output documents.

� EMBED Excel.Sheet.8 ���

Figure6: Organization of the caching subsystem

� EMBED Unknown ���

Proceedings of the HICSS – 2000, Maui, Hawai'i, USA, January 2000.

[image: image7.wmf]Run time

0

1

2

3

4

5

6

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of output documents

Running time of the

application

Static impl

Mobile impl

[image: image8.wmf]Transfer overhead

0

1

2

3

4

5

6

7

8

9

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of output documents

Quantity of data

transferred

Static impl

Mobile impl

_998488688.doc

C

O

N

T

R

O

L

L

O

G

I

C

Server

Agent

Topic

Space

Time

Generator

Input set

Current set

Output set

TopData

NetData

Monitor

+

Client Agent

Spider

MAgent

_998488828.doc

C

O

N

T

R

O

L

P

R

O

G

R

A

M

Agent

Spider

Topic

Space

Time

Generator

Input set

Current set

Output set

TopData

NetData

_981573995.xls
Chart3

		5		5

		6		6

		7		7

		8		8

		9		9

		10		10

		11		11

		12		12

		13		13

		14		14

		15		15

		16		16

		17		17

		18		18

		19		19

		20		20

Static impl

Mobile impl

Number of output documents

Quantity of data transferred

Transfer overhead

6.5

5.25

7

5.55

7.35

5.8

7.6

5.98

7.8

6.1

8

6.2

8.1

6.25

8.2

6.3

8.25

6.3

8.3

6.35

8.3

6.35

8.3

6.4

8.35

6.4

8.35

6.4

8.35

6.4

8.35

6.4

Sheet1

				Static impl		Mobile impl

		5		6.5		5.25

		6		7		5.55

		7		7.35		5.8

		8		7.6		5.98

		9		7.8		6.1

		10		8		6.2

		11		8.1		6.25

		12		8.2		6.3

		13		8.25		6.3

		14		8.3		6.35

		15		8.3		6.35

		16		8.3		6.4

		17		8.35		6.4

		18		8.35		6.4

		19		8.35		6.4

		20		8.35		6.4

Chart4

		5		5

		6		6

		7		7

		8		8

		9		9

		10		10

		11		11

		12		12

		13		13

		14		14

		15		15

		16		16

		17		17

		18		18

		19		19

		20		20

Static impl

Mobile impl

Number of output documents

Running time of the application

Run time

3

2.05

3.4

2.1

3.75

2.15

4

2.2

4.2

2.25

4.4

2.25

4.5

2.25

4.65

2.3

4.75

2.3

4.85

2.3

4.9

2.35

4.95

2.35

4.95

2.35

5

2.35

5

2.35

5.05

2.35

Sheet2

				Static impl		Mobile impl

		5		3		2.05

		6		3.4		2.1

		7		3.75		2.15

		8		4		2.2

		9		4.2		2.25

		10		4.4		2.25

		11		4.5		2.25

		12		4.65		2.3

		13		4.75		2.3

		14		4.85		2.3

		15		4.9		2.35

		16		4.95		2.35

		17		4.95		2.35

		18		5		2.35

		19		5		2.35

		20		5.05		2.35

Chart5

		5		5

		6		6

		7		7

		8		8

		9		9

		10		10

		11		11

		12		12

		13		13

		14		14

		15		15

		16		16

		17		17

		18		18

		19		19

		20		20

Static impl

Mobile impl

Number of output documents

Jaccard's score

Jaccard's score

0.195

0.2

0.195

0.2

0.1925

0.2

0.1925

0.2

0.19

0.1975

0.187

0.1975

0.1856

0.1975

0.1831

0.195

0.18

0.195

0.178

0.195

0.1756

0.1925

0.174

0.1925

0.17

0.1925

0.166

0.19

0.162

0.19

0.157

0.19

Sheet3

				Static impl		Mobile impl

		5		0.195		0.2

		6		0.195		0.2

		7		0.1925		0.2

		8		0.1925		0.2

		9		0.19		0.1975

		10		0.187		0.1975

		11		0.1856		0.1975

		12		0.1831		0.195

		13		0.18		0.195

		14		0.178		0.195

		15		0.1756		0.1925

		16		0.174		0.1925

		17		0.17		0.1925

		18		0.166		0.19

		19		0.162		0.19

		20		0.157		0.19

_989496962.vsd

_989431404.vsd
Local
proxy
cache�

Network�

Static (local) agent�

Mobile agent�

WEB
Server�

User�

HTTP�

HTTP�

HTTP�

ICP�

Messages�

HTTP�

_981573002.xls
Chart3

		5		5

		6		6

		7		7

		8		8

		9		9

		10		10

		11		11

		12		12

		13		13

		14		14

		15		15

		16		16

		17		17

		18		18

		19		19

		20		20

Static impl

Mobile impl

Number of output documents

Quantity of data transferred

Transfer overhead

6.5

5.25

7

5.55

7.35

5.8

7.6

5.98

7.8

6.1

8

6.2

8.1

6.25

8.2

6.3

8.25

6.3

8.3

6.35

8.3

6.35

8.3

6.4

8.35

6.4

8.35

6.4

8.35

6.4

8.35

6.4

Sheet1

				Static impl		Mobile impl

		5		6.5		5.25

		6		7		5.55

		7		7.35		5.8

		8		7.6		5.98

		9		7.8		6.1

		10		8		6.2

		11		8.1		6.25

		12		8.2		6.3

		13		8.25		6.3

		14		8.3		6.35

		15		8.3		6.35

		16		8.3		6.4

		17		8.35		6.4

		18		8.35		6.4

		19		8.35		6.4

		20		8.35		6.4

Chart4

		5		5

		6		6

		7		7

		8		8

		9		9

		10		10

		11		11

		12		12

		13		13

		14		14

		15		15

		16		16

		17		17

		18		18

		19		19

		20		20

Static impl

Mobile impl

Number of output documents

Running time of the application

Run time

3

2.05

3.4

2.1

3.75

2.15

4

2.2

4.2

2.25

4.4

2.25

4.5

2.25

4.65

2.3

4.75

2.3

4.85

2.3

4.9

2.35

4.95

2.35

4.95

2.35

5

2.35

5

2.35

5.05

2.35

Sheet2

				Static impl		Mobile impl

		5		3		2.05

		6		3.4		2.1

		7		3.75		2.15

		8		4		2.2

		9		4.2		2.25

		10		4.4		2.25

		11		4.5		2.25

		12		4.65		2.3

		13		4.75		2.3

		14		4.85		2.3

		15		4.9		2.35

		16		4.95		2.35

		17		4.95		2.35

		18		5		2.35

		19		5		2.35

		20		5.05		2.35

Chart5

		5		5

		6		6

		7		7

		8		8

		9		9

		10		10

		11		11

		12		12

		13		13

		14		14

		15		15

		16		16

		17		17

		18		18

		19		19

		20		20

Static impl

Mobile impl

Number of output documents

Jaccard's score

Jaccard's score

0.195

0.2

0.195

0.2

0.1925

0.2

0.1925

0.2

0.19

0.1975

0.187

0.1975

0.1856

0.1975

0.1831

0.195

0.18

0.195

0.178

0.195

0.1756

0.1925

0.174

0.1925

0.17

0.1925

0.166

0.19

0.162

0.19

0.157

0.19

Sheet3

				Static impl		Mobile impl

		5		0.195		0.2

		6		0.195		0.2

		7		0.1925		0.2

		8		0.1925		0.2

		9		0.19		0.1975

		10		0.187		0.1975

		11		0.1856		0.1975

		12		0.1831		0.195

		13		0.18		0.195

		14		0.178		0.195

		15		0.1756		0.1925

		16		0.174		0.1925

		17		0.17		0.1925

		18		0.166		0.19

		19		0.162		0.19

		20		0.157		0.19

