Internet database access using Active Server Pages

Jelena Galic, B.Sc. EE & CS (galic@EUnet.yu)
Miroslav Pesic, B.Sc. EE & CS (pesicm@EUnet.yu)

Essence of dynamic content on the Web

Static Web content:
· Limited interraction between Web client and Web server.

· Pages must be edited manually.

Dynamic Web content:
· Pages (or their parts) are generated on-the-fly, when Web client requests a page from Web server.

· Displayed content is usually retrieved from databases stored on Web server.

· Ideal for creation of shopping sites and other electronic business related content on the Internet.

· Can be created using ASP (Active Server Pages), CGI (Common Gateway Interface), etc.

ASP vs. CGI

Essence of CGI (Common Gateway Interface):

· Scripts or programs are stored on server in cgi-bin directory.

· Scripts or programs use standard input to retreive form or query string data sent by the client: form data must be parsed in order to be useful.

· Scripts or programs use standard output to produce HTML code: it is difficult and time-consuming to control Web page appearance.

· Gateway programs are not integrated into HTML files; in fact, they require an entirely different design process than do HTML files.

· Supported by all Web servers.

Essence of ASP (Active Server Pages):

ASP are made of server-side scripts completely integrated with HTML files.

ASP documents have .asp extension.

Scripts are separated from HTML tags and text using special delimiters (<% and %>). Scripts can be placed anywhere inside or outside HTML document.

Server-side script engine processes all .asp documents requested by Web clients. HTML code parts are sent to clients and script parts are interpreted. Script output is sent together with HTML code.

Standard support for VBScript (Visual Basic Scripting Edition) and JavaScript. Other script languages can be supported too with appropriate server-side script engine.

ASP have support for client certificates through Secure Sockets Layer (SSL) or Private Communications Technology (PCT1).

Easy to create, with no manual compiling or linking of programs required.

Great control of HTML output. It it possible to use visual Web page editors and visually insert scripts.

Object-oriented and extensible with ActiveX server components.

ASP is Microsoft technology. Requirements:

· Internet Information Server on Windows NT Server.

· Microsoft Peer Web Services on Windows NT Workstation.

· Personal Web Server on Windows 95/98 for less demanding users.

More on ASP

· An ASP script begins to run when a browser requests an .asp file from your Web server. Your Web server then calls ASP, which reads through the requested file from top to bottom, executes any commands, and sends an HTML page to the browser.

· A user who requests an ASP page cannot see the scripts contained in the .asp file. Using a browser’s View Source command simply reveals the HTML tags and text that have been returned to the browser after the scripts have been executed.

· ASP has built-in objects with methods for most frequently used operations:

· Sharing information among users and page hit counting.

· Retrieving the values that the client browser passed to the server during an HTTP request.

· Sending output to the client.

· ASP has ActiveX server components for:

· Retrieving data from a database (using ActiveX Data Abjects - ADO).

· Displaying advertisments on a page.

· Determining browser capabilities.

· Reading and writing to files.

· Managing page navigation.

An ASP example

Consider the following form:

<FORM ACTION = "/scripts/submit.asp" METHOD = "post">

<P>Your first name: <INPUT NAME = "firstname" SIZE = 48>

<P>What is your favorite ice cream flavor: <SELECT NAME = "flavor">

<OPTION>Vanilla

<OPTION>Strawberry

<OPTION>Chocolate

<OPTION>Rocky Road</SELECT>

<p><INPUT TYPE = SUBMIT>

</FORM>

From that form, the following request body might be sent:

firstname=James&flavor=Rocky+Road

The following script can then be used:

Welcome, <%= Request.Form("firstname") %>.

Your favorite flavor is <%= Request.Form("flavor") %>.

The following output is the result:

Welcome, James. Your favorite flavor is Rocky Road.

If the following script is used:

The unparsed form data is: <%= Request.Form %>

The output would be:

The unparsed form data is: firstname=James&flavor=Rocky+Road

